Averaging formula for Nielsen coincidence numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lefschetz and Nielsen Coincidence Numbers on Nilmanifolds and Solvmanifolds

Suppose M 1 ; M 2 are compact, connected orientable manifolds of the same dimension. Then for all pairs of maps f,g:M 1 ?! M 2 , the Nielsen coincidence number N(f,g) and the Lefschetz coincidence number L(f,g) are measures of the number of coincidences of f and g: points x 2 M 1 with f(x) = g(x). A manifold is a nilmanifold (solvmanifold) if it is a homogeneous space of a nilpotent (solvable) ...

متن کامل

Lefschetz and Nielsen Coincidence Numbers on Nilmanifolds and Solvmanifolds, Ii

In 10], it was claimed that Nielsen coincidence numbers and Lefschetz coincidence numbers are related by the inequality N (f; g) jL(f; g)j for all maps f; g : S 1 ! S 2 between compact orientable solvmanifolds of the same dimension. It was further claimed that N (f; g) = jL(f; g)j when S 2 is a nilmanifold. A mistake in that paper has been discovered. In this paper, that mistake is partially re...

متن کامل

Methods in Nielsen Coincidence Theory

In classical fixed point and coincidence theory the notion of Nielsen numbers has proved to be extremely fruitful. Here we extend it to pairs (f1, f2) of maps between manifolds of arbitrary dimensions. This leads to estimates of the minimum numbers MCC(f1, f2) (and MC(f1, f2), resp.) of pathcomponents (and of points, resp.) in the coincidence sets of those pairs of maps which are homotopic to (...

متن کامل

Higher-order Nielsen Numbers

Suppose X , Y are manifolds, f ,g : X → Y are maps. The well-known coincidence problem studies the coincidence set C = {x : f (x) = g(x)}. The number m= dimX −dimY is called the codimension of the problem. More general is the preimage problem. For a map f : X → Z and a submanifold Y of Z, it studies the preimage set C = {x : f (x) ∈ Y}, and the codimension is m = dimX + dimY − dimZ. In case of ...

متن کامل

The Nielsen coincidence theory on topological manifolds

We generalize the coincidence semi-index introduced in [D-J] to pairs of maps between topological manifolds. This permits extending the Nielsen theory to this class of maps. Introduction. In this paper we generalize the coincidence semi-index theory, introduced in [D-J] in the smooth case, to pairs of maps between topological manifolds. It will be based on the topological transversality lemma (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 2007

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000009363